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TOPOLOGICAL ANALYSIS OF SUPER-DYADIC GRAPHS
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Abstract. For the topological analysis of complex networks having a

super-dyadic nature, hypergraph representation is more convenient than

graph representation in many cases. This paper presents new parameters
that can be used to investigate the interactions between various network

nodes. Based on this parameter, topological indices are defined and dis-
cussed. To construct a hypergraph with a highly modular structure, this

paper introduces an inequality.
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1. Introduction

Numerous problems in the real world cannot be represented by a simple graph;
in a simple graph, each edge joins exactly two nodes. A unique kind of graph
where one edge can link two or more nodes is called a hypergraph. A hypergraph
Z is represented mathematically by the pair (Y,E), where Y is the vertex set
and E is a collection of subsets of Y (hyperedge set)[15, 21].

Graphs only go so far in simulating the complexity of many real-world prob-
lems. More generally than graphs, hypergraphs can model intricate systems.
Gene interactions, risk management, computer networks, social networks, and
visual classification are just some of the many applications for hypergraphs.
We can display information regarding relationships that involve more than one
object due to the use of hypergraphs [7].

Consider, for instance, a graph that shows the authors of papers and their
collaborations on papers. Imagine that you have three authors as well as the
following graph, in which the authors serve as the vertices of the network and
the edges represent the authors’ contributions to a publication. As a result of
this, we are aware that each author collaborated with two of the other authors at
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some point on a paper; however, we are unable to identify whether this occurred
independently on each of the three papers or whether it occurred simultaneously
on a single manuscript. On the other hand, we can illustrate this using a hyper-
graph, with each edge standing for a different collaboration that was included
in the publication.

Because of its versatility in representing group relationships, hypergraphs are
often used to address complex technical issues [1, 21]. Social media networks
such as Facebook and LinkedIn are concrete illustrations of hypergraphs in the
real world. Each user is a vertex that can belong to a group and a hyperedge is
a group.

Topological indices are numerical values that represent a graph’s structural
characteristics. Chemical graph theory, a field of mathematics that combines
graph theory and chemistry, showed a great deal of interest in it. Some topolog-
ical indices have shown to be helpful in the process of identifying quantitative
structure-property relationships (QSPRs) and quantitative structure-activity re-
lationships (QSARs) [11, 22]. Numerous topological indices are derived from var-
ious parameters, including degree, eccentricity, distance, and so on [3, 9, 16]. In
the literature on mathematical chemistry and mathematics, several degree-based
graph invariants are studied, but Zagreb indices are among the most prominent.

First Zagreb index of a graph Q is defined as Z1(Q) =
∑

uv∈E(Q)[d(u) +

d(v)] =
∑

v∈V (Q) d
2(v) [5, 18, 19]. Topological indices are significant numbers

that represent different aspects of the network’s connection.
Many science-related networks, such as social networks, computer networks,

and metabolic and regulatory networks, naturally divide into communities or
modules. Detecting and characterizing this modular structure is one of the out-
standing difficulties in networked system research. A connected element of a
graph is generalized into a module. One module, however, can be a proper
subset of another, unlike connected components. Hence, modules result in a
recursive (hierarchical) breakdown of the network as opposed to merely a divi-
sion. Techniques for identifying modules, or communities inside networks, are
particularly interesting as they reveal significant subnetworks or building blocks
that are especially closely coupled, frequently correlating to specialized func-
tional components [13, 17]. This work is focused on the construction of modular
structure for hypergraph.

This paper introduces a new parameter, hyperedge degree dh(l), and new
topological indices based on this parameter value. This parameter depends on
the degree of each vertex of the hyperedge l. A social network like Facebook
or LinkedIn can be represented as a hypergraph, where users are the vertices
and groups are the hyperedges. Hence, a high dh(l) indicates that group l has a
significant impact on other groups. If users in group l are also members of several
other groups, then dh(l) will be high. This attribute might be very useful for
disseminating crucial information (emergency situations) through social media.
In this case, this message can be distributed to some groups with higher dh(l).
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So, in a short period of time and with little work, it will spread and produce
significant benefits.

The representation of networks as hypergraphs is the main topic of this re-
search. Using these hypergraph implementations in social networks like Face-
book, it is possible to discover users with more influence over others. The first
section is used to introduce the work carried out. In this work, some topological
indices are defined based on the new parameter introduced in the second sec-
tion. Graph operations are covered in the third section, which can be used to
construct larger networks from smaller ones. The fourth section deals with the
construction of a modular structure.

2. Hypergraph Topological Indices

In this section, new topological indices based on the hypergraph degrees of
certain graph families are defined and discussed. Some graph families Q that
facilitate small-world organization are the wheel, firefly, windmill, and so on [14].
Windmill graph W b

p is an undirected graph made by combining b copies of the
entire graph Kp at a common universal vertex for p(> 2) and b(> 2), and wheel
graph Wf is a graph of f vertices that is generated by joining every cycle vertex
to one universal vertex, firefly graph Fc,d,t is a graph composed of c triangles,
t pendant paths of length 2, and d pendant edges sharing a common vertex
[4, 10, 12]. For our convenience, each set of vertices that induces a complete
graph is treated as a hyperedge. A complete graph is treated as a hypergraph
with only one hyperedge. The impact of a hyperedge’s peripheral connections
with other hyperedges on dh(l) values is explained in this section.

Definition 2.1. If Y and E are the sets of vertex and hyperedge, respectively,
and each hyperedge is a non-empty subset of Y , then the pair (Y,E) is called a
hypergraph Z.

Definition 2.2. Let Z be a hypergraph with vertex set Y = {y1, y2, ..., yn} and
let l and y be a hyperedge and vertex respectively. Then hyperedge degree is
defined as dh(l) =

∑
y∈l dh(y) − |l| where dh(y) is the total number of vertex y

contained hyperedges in Z and |l| is the number of vertices in l.

Definition 2.3. Let Z be a hypergraph with edge set E. Then hyper first
Zagreb index and hyper degree index are defined as, HZ1(Z) =

∑
l∈E d2h(l) and

HD(Z) =
∑

l∈E dh(l) respectively.

Lemma 2.4. Let l be a hyperedge and each hyperedge is a set of vertices induce
a complete graph and let n(E) be the total number of hyperedges in Z.

• If Cf is a cycle graph(f vertices).Then n(E) = f and dh(l) = 2 ∀l ∈ Cf .
So, HD(Cf ) = 2f and HZ1(Cf ) = 4f .

• For a tree T , dh(l) = n(v) + n(u)− 2 ∀l ∈ T , where v, u ∈ l, v ̸= u and
n(v) is a neighbor set of vertex v. Then HD(T ) =

∑
vu∈E(T )(n(v) +

n(u)− 2) and HZ1(T ) =
∑

vu∈E(T )(n(v) + n(u)− 2)2.

In particular,
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– If Pf is a path(f vertices), then

dh(l) =

{
1 ;if l is set of vertices induces an end edge

2 ; otherwise
.

Therefore HD(Pf ) = 2(f − 2) and HZ1(Pf ) = 4(f − 3) + 2.
– For a star graph St with t + 1 vertices, dh(l) = t − 1, HD(St) =

t(t− 1) and HZ1(St) = t(t− 1)2.

Proof. In the case of Cf and tree T , sets of vertices that induce K2 are the
hyperedges. So, HD(Cf ) = 2f , HZ1(Cf ) = 4f , HD(T ) =

∑
uv∈E(T )(n(v) +

n(u)− 2) and HZ1(T ) =
∑

uv∈E(T )(n(v) + n(u)− 2)2. □

Lemma 2.5. For a Windmill graph W b
p , n(E) = b and dh(l) = b − 1 ∀l ∈ W b

p

where total number of hyperedges in W b
p is denoted by n(E).

Proof. Since a windmill graph is a graph consisting of b number of Kp and each
set of vertices induces a complete graph is a hyperedge, n(E) = b. So,

dh(y) =

{
b ;if y is the center

1 ; otherwise
and hence

dh(l) =
∑

y∈l dh(y)− |l| = b+ p− p− 1 = b− 1 □

Theorem 2.6. For a Windmill graph W b
p , HD(W b

p ) = (b−1)b and HZ1(W
b
p ) =

(b− 1)2b.

Proof. dh(l) = b − 1 ∀l ∈ Q (from lemma(2.2)). So, HD(W b
p ) =

∑
l∈E dh(l) =

(b− 1)× (b− 1)...× (b− 1) (b times) = (b− 1)b and HZ1(W
b
p ) =

∑
l∈E d2h(l) =

(b− 1)2 × (b− 1)2 × ...× (b− 1)2 (b times) = (b− 1)2b. □

Lemma 2.7. For a Firefly graph Fc,d (with t = 0), n(E) = c + d and dh(l) =
c+ d− 1 ∀l ∈ Fc,d.

Proof. Since Fc,d contains c set of vertices that induces triangles (means K3)
and d set of vertices induces pendent edges (means K2) and each set of vertices
induces complete graph is a hyperedge, the total number of hyperedges in Fc,d

is c+ d. So,

dh(y) =

{
c+ d ;if y is the center

1 ; otherwise
and hence

dh(l) =
∑

y∈l dh(y)− |l|

=

{
1 + 1 + (c+ d)− 3 ;if l is set of vertices induces K3

1 + c+ d− 2 ; if l is set of vertices induces K2

=

{
c+ d− 1 ;if l is set of vertices induces K3

c+ d− 1 ; if l is set of vertices induces K2

□

Theorem 2.8. If Q be Fc,d then HD(Q) = (c + d − 1)(c + d) and HZ1(Q) =
(c+ d− 1)2(c+ d).
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Proof. dh(l) = c+ d− 1 ∀l ∈ Q (from lemma(2.7)). So, HD(Q) =
∑

l∈E dh(l) =
(c + d − 1) × (c + d − 1)... × (c + d − 1) (c+d times) = (c + d − 1)(c + d) and
HZ1(Q) =

∑
l∈E d2h(l) = (c+ d− 1)2 × (c+ d− 1)2...× (c+ d− 1)2 (c+d times)

= (c+ d− 1)2(c+ d). □

Lemma 2.9. For a Wheel graph Wf (f vertices), n(E) = f and dh(l) = 1 + f
∀l ∈ Wf where total number of hyperedges in Wf is denoted by n(E).

Proof. Since the wheel graph contains f set of vertices that induces triangles
(means K3) and each set of vertices induces a complete graph is a hyperedge,
the total number of hyperedges in Wf is f . So,

dh(y) =

{
f ;if y is the center

2 ; otherwise
and hence

dh(l) =
∑

y∈l dh(y)− |l| = 2 + 2 + f − 3 = f + 1 □

Theorem 2.10. If Q ∼= Wf then HD(Q) = f(f +1) and HZ1(Q) = f(f +1)2.

Proof. dh(l) = f + 1 ∀l ∈ Q (from lemma(2.9)). So, HD(Q) =
∑

l∈E dh(l) =

(f +1)× (f +1)× ...× (f +1) (f times) = f(f +1) and HZ1(Q) =
∑

l∈E d2h(l) =

(f + 1)2 × (f + 1)2 × ...× (f + 1)2 (f times) = f(f + 1)2. □

3. Hypergraph Topological Indices and Graph Operations

Graph operations enable us to build big networks out of smaller ones and
vice versa. Graph operations cartesian product, join, composition, and corona
products are defined as, the cartesian product Q1 ×Q2 of graphs Q1 and Q2 is
a graph with vertex set V (Q1×Q2) = V (Q1)×V (Q2) and (c, x)(d, y) is an edge
of Q1 ×H2 if c = d and xy ∈ Q2, or cd ∈ E(Q1) and x = y; the join Q1 + Q2

of graphs Q1 and Q2 is a graph with vertex set V (Q1) ∪ V (Q2) and edge set
E(Q1) ∪ E(Q2) ∪ {xy;x ∈ V (Q1) and y ∈ V (Q2)}; the composition Q1 ◦ Q2

of graphs Q1 and Q2 with disjoint vertex sets V (Q1) and V (Q2) and edge sets
E(Q1) and E(Q2) is the graph with vertex set V (Q1)× V (Q2) and x = (x1, y1)
is adjacent to y = (x2, y2) whenever x1 is adjacent to x2 or x1 = x2 and y1 is
adjacent to y2; the corona product Q1 + Q2 of graphs Q1 and Q2 is a graph
formed by taking one copy of Q1 and |V (Q1)| copies of Q2, and then connecting
via an edge, with each vertex of the kth copy of Q2 labeled (Q2, k) with the kth
vertex of Q1 [8, 20].

These graph operations—join, composition, cartesian, and corona products,
among others—allow one to start from a collection of smaller communities and
produce a large community or entire network, and vice versa. This section
explains a number of graph operations that help build hypergraphs and talks
about the outcomes of such operations on hypergraphs. This section specifically
addresses the outcomes of graph operations on hypergraphs.

Lemma 3.1. Let Z1 = Kr and Z2 = Ks. Then cartesian product Z = Z1×Z2 is
a hypergraph with edge set E(Z) = {E(Z1)(s times), E(Z2)(r times)} and vertex
set Y (Z) = Y (Z1)× Y (Z2).
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Proof. From the definition of the cartesian product of graphs and hypergraphs.
□

Theorem 3.2. Let Z1 = Kr and Z2 = Ks. Then the cartesian product Z = Z1×

Z2 contains r+ s hyperedges and dh(l) =

{
r ;if l is set of vertices induces Kr

s ;if l is set of vertices induces Ks

and HD(Z) = 2|Y (Z2)||Y (Z1)| and HZ1(Z) = (|Y (Z2)|+|Y (Z1)|)|Y (Z2)||Y (Z1)|

Proof. From lemma(3.1), clear that Z contains r + s hyperedges. There are
two types of edges ϵ1 and ϵ2 where ϵ1 is a set of vertices that induces Kr

and ϵ2 is a set of vertices that induces Ks. Here dh(y) = 2 ∀y ∈ Z and
E(Z) = {Y (Ks), ..., Y (Ks)(r times), Y (Kr), ..., Y (Kr)(s times)} where Y (Z) de-
notes the vertex set of Z. Since dh(l) =

∑
y∈l dh(y)−|l|, dh(ϵ2) = 2+2+ ...+2(s

times)− s = s and dh(ϵ1) = 2 + 2 + ...+ 2(r times)− r = r. So,

dh(l) =

{
s ;if l is set of vertices induces Ks

r ;if l is set of vertices induces Kr

HD(Z) =
∑

l∈Z1×Z2
dh(l)

=
∑

l∈Z1
dh(l) +

∑
l∈Z2

dh(l)
= (2r − r)× s+ (2s− s)× r
= 2rs
= 2|Y (Z2)||Y (Z1)|

HZ1(Z) =
∑

l∈Z1×Z2
d2h(l)

=
∑

l∈Z1
d2h(l) +

∑
l∈Z2

d2h(l)
= (2r − r)2 × s+ (2s− s)2 × r
= rs(r + s)
= |Y (Z1)||Y (Z2)|(|Y (Z1)|+ |Y (Z2)|)

□

Theorem 3.3. If Z1 and Z2 are complete graphs, then the composition of Z1

and Z2 is also complete.

Proof. Let Kr and Ks be complete graph with vertex sets {v1, v2, ..., vs} and
{u1, u2, ..., ur} respectively. Since edge sets E(Kr) = {u1u2, ..., u1un, u2u3, ...,
u2un, ..., ur−1ur} and E(Ks) = {v1v2, ..., v1vs, v2v3, ..., v2vs, ...vs−1vs} and ver-
tex set Y (Kr ◦Ks) = Y (Kr)× Y (Ks) = {uivj ; j = 1, 2, ..., s and i = 1, 2, ..., r},
all edges of Krs except {(uivj)(uivk)} are covered by the first condition of com-
position, where j ̸= k, j, k = 1, 2, ..., s and i = 1, 2, ..., r. These remaining edges
for the completion of the complete graph are covered by the second requirement
of composition. □

Lemma 3.4. Join product Z of hypergraphs Z1 and Z2 is a hypergraph (Z1+Z2)
with hyperedge set E(Z) = {e′ ∪ e∗;∀e′ ∈ E(Z1) and e∗ ∈ E(Z2)} and vertex set
Y (Z) = Y (Z1) ∪ Y (Z2).

Proof. From join product definition of graphs and hypergraph definition. □
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Theorem 3.5. Let ϵ = e′∪e∗ be a hyperedge of Z where Z = Z1+Z2 is the join
of hypergraphs Z1 and Z2, then Z contains r1r2 hyperedges where r1 and r2 are
the number of hyperedges in Z1 and Z2 respectively and dh(l) = r2(dh(e

′)+|e′|)+
r1(dh(e

∗ + |e∗|), where e′ ∈ E(Z1) and e∗ ∈ E(Z2) and HD(Z) = n2
2HD(Z1) +

r21HD(Z2) + r2(r2 − 1)
∑

e′ |e′|+ r1(r1 − 1)
∑

e∗ |e∗|.
Proof. Let Z1 contains r1 hyperedges and Z contains r2 hyperedges then dh(Y ) ={
r1dh(y) ; if y ∈ Y (Z2)

r2dh(y) ; if y ∈ Y (Z1)
and number of hyperedges in Z, n(E(Z)) = n(E(Z1+

Z2)) = n(E(Z1))× n(E(Z2)) = r1r2.
Let e′1, e

′
2, ..., e

′
r1 are hyperedges of Z1 and e∗1, e

∗
2, ..., e

∗
r2 are hyperedges of Z2,

then
E(Z) = E(Z1+Z2) = {(e′1∪e∗1), (e

′
1∪e∗2), ..., (e

′
1∪e∗r2), (e

′
2∪e∗1), (e

′
2∪e∗2), ..., (e

′
2∪

e∗r2), ..., (e
′
r1 ∪ e∗1), (e

′
r1 ∪ e∗2), ..., (e

′
r1 ∪ e∗r2). Let e

′ ∈ E(Z1) and e∗ ∈ E(Z2) then

dhZ1+Z2
(l) = dh(e

∗ + e′); e∗ ∈ Z2, e
′ ∈ Z1

=
∑

y∈Y (e∗+e′) dh(y)− |e∗ + e′|
= r1

∑
y∗∈Y (e∗) dh(y

∗) + r2
∑

y∈Y (e′) dh(y)− |e′| − |e∗|
= r2dh(e

′) + r1dh(e
∗) + (r2 − 1)|e′|+ (r1 − 1)|e∗|

HD(Z1 + Z2) =
∑

l∈E(Z1+Z2)
dh(l)

=
∑

e′∈E(Z1),e∗∈E(Z2)
dh(e

′ ∪ e∗)

= r2(dh(e
′
1) + |e′1|) + r1(dh(e

∗
1) + |e∗1| − (|e′1|+ |e∗1|))+

r2(dh(e
′
1) + |e′1|) + r1(dh(e

∗
2) + |e∗2|)− (|e′1|+ |e∗2|) + ...+

r2(dh(e
′
1) + |e′1|) + r1(dh(e

∗
r2) + |e∗r2 |)− (|e′1|+ |e∗r2 |)+

r2(dh(e
′
2) + |e′2|) + r1(dh(e

∗
1) + |e∗1|)− (|e′2|+ |e∗1|)

+r2(dh(e
′
2) + |e′2|) + r1(dh(e

∗
2) + |e∗2|)− (|e′2|+ |e∗2|) + ...+

r2(dh(e
′
2) + |e′2|) + r1(dh(e

∗
r2) + |e∗r2 |)− (|e′2|+ |e∗r2 |) + ...+

r2(dh(e
′
r1) + |e′r1 |) + r1(dh(e

∗
1) + |e∗1|)− (|e′r1 |+ |e∗1|)+

r2(dh(e
′
r1) + |e′r1 |) + r1(dh(e

∗
2) + |e∗2|)− (|e′r1 |+ |e∗2|)

+...+ r2(dh(e
′
r1) + |e′r1 |) + r1(dh(e

∗
r2) + |e∗r2 |)− (|e′r1 |+ |e∗r2 |)

= r22
∑r1

i=1(dh(e
′
i) + |e′i|) + r21

∑r2
j=1(dh(e

∗
j ) + |e∗j |)−

(r2
∑r1

i=1 |e′i|+ r1
∑r2

j=1 |e∗j |)
= r22

∑
e′∈E(Z1)

(dh(e
′) + |e′|) + r21

∑
e∗∈E(Z2)

(dh(e
∗) + |e∗|)

−(r2
∑

e′∈E(Z1)
|e′|+ r1

∑
e∗∈E(Z2)

|e∗|)
= r22HD(Z1) + r21HD(Z2) + r2(r2 − 1)

∑
e′ |e′|+

r1(r1 − 1)
∑

e∗ |e∗|
□

Lemma 3.6. Let Z = Z1⊙Z2 be the corona product of Z1 and Z2 where Z1 = St

and Z2 = Kf , then Z is a hypergraph with edge set E(Z) = {Y (Kf+1)((t + 1)
times), Y (K2)(t times)} and |Y (Z)| = (f + 1)(t+ 1).

Proof. From corona product definition of graphs and hypergraph definition. □

Theorem 3.7. Let Z = Z1⊙Z2 be the corona product of Z1 = St and Z2 = Kf .
Then Z contains 2t+ 1 hyperedges and
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dh(l) =


t ;if l is the set of vertices induces Kf+1 attached to the center

t+ 1 ;if l is set of vertices induces K2 (the pendant edge of St)

1 ;otherwise

and HD(Z) = HD(Z1) + 4t and HZ1(Z) = HZ1(Z1) + 5t2 + t

Proof. From lemma(3.6), clear that n(E) = 2t + 1. There are three types of
edge ϵ1, ϵ2, ϵ3. ϵ1 is set of vertices induces K2, ϵ2 is set of vertices induces
Kf+1 attached to the center, ϵ3 is set of vertices induces Kf+1 which is not
attached to the center. Here E(Z) = {Y (Kf+1)((t+1) times), Y (K2)(t times)},

dh(y) =


2 ;if y is the pendent vertex of St

t+ 1 ;if y is the center of St

1 ;otherwise

. Since dh(l) =
∑

y∈l dh(y)−|l|, dh(ϵ3) = 2+1+1+ ...+1(f times)−(f+1) = 1,

dh(ϵ2) = (t+1)+1+1+...+1(f times)−(f+1) = t and dh(ϵ1) = t+1+2−2 = t+1.
So,

dh(l) =


t+ 1 ;if l is set of vertices induces K2 (the pendant edge of St)

t ;if l is the set of vertices induces Kf+1 attached to the center

1 ;otherwise

HD(Z) =
∑

l∈Z dh(l) = t × (t + 1) + 1 × t + t × 1 = t2 + 3t = t(t − 1) + 4t =
HD(Z1) + 4t
HZ1(Z) =

∑
l∈Z d2h(l) = t × (t + 1)2 + 1 × t2 + t × 12 = t(t − 1)2 + 5t2 + t =

HZ1(Z1) + 5t2 + t
□

Lemma 3.8. Let Z = Z1⊙Z2 be the corona product of Z1 and Z2 where Z1 = Kr

and Z2 = Ks. Then Z is a hypergraph with edge set E(Z) = {Y (Ks+1)(r
times), Y (Kr)} and |Y (Z)| = r(s+ 1).

Proof. From corona product definition of graphs and hypergraph definition. □

Theorem 3.9. Let Z1 = Kr and Z2 = Ks, then the corona product Z = Z1⊙Z2

contains r + 1 hyperedges and dh(l) =

{
1 ;if l is set of vertices induces Ks+1

r ;if l is set of vertices induces Kr

and HD(Z) = 2n(Z1) and HZ1(Z) = n(Z1)[n(Z1) + 1] where n(Z) is the cardi-
nality of vertex set of Z.

Proof. From lemma(3.8), clear that Z contains r+1 hyperedges. There are two
types of edge ϵ1 and ϵ2. ϵ1 is set of vertices induces Kn and ϵ2 is set of vertices
induces Ks+1. Here E(Z) = {Y (Ks+1)(r times), Y (Kr)},

dh(y) =

{
2 ;if y ∈ Y (Kr)

1 ;if y ∈ Y (Ks)
and dh(l) =

∑
y∈l dh(y) − |l|. Therefore dh(ϵ2) =

2+1+1+ ...+1(s times)−(1+s) = 1 and dh(ϵ1) = 2+2+ ...+2(r times)−r = r.
So,
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dh(l) =

{
1 ;if l is set of vertices induces Ks+1

r ;if l is set of vertices induces Kr

HD(Z) =
∑

l∈Z dh(l) = r × 1 + 1× r = 2r = 2n(Z1)

HZ1(Z) =
∑

l∈Z d2h(l) = r × 12 + 1×2 = r + r2 = n(Z1)[n(Z1) + 1] □

4. Modular Structure Construction

In the context of networks, complicated interactions between several nodes
can be represented as hypergraphs. There are more connections between nodes
within modules in highly modular networks than there are between modules.
A structural measure known as a network’s modularity assesses how easily a
network may be divided into more manageable sub-networks, sometimes known
as groups, communities, or clusters. More intra-module connections and fewer
inter-module connections are indicative of higher modularity[2, 6].

Let Z be the hypergraph and let l be a hyperedge in Z. The hyperedge degree
is hence dh(l) =

∑
y∈l dh(y) − |l|, where dh(y) is the total number of vertex y

contained hyperedges in Z and |l| is the number of vertices in l. For each
hyperedge l in Z, the clique strength of internal connections is approximately
equal to x(x− 1)/2, where x is the edge’s size.

The community’s weak external links are just as significant as its strong in-
ternal connections. When x is the size of edge l, then a strongly linked local
region satisfies x(x− 1)/2 ≥

∑
y∈l dh(y)− x.

i.e., |l|(|l| − 1)/2 ≥ 2
∑

y∈l dh(y)− |l|
⇒ |l|2 − |l| ≥

∑
y∈l dh(y)− |l|

⇒ (|l|2 + |l|)/2 ≥
∑

y∈l dh(y)

So, this inequality helps to construct the modular structure of a hypergraph.
Each module in a modular system is framed by dense connections inside each
module and weak connections across modules. This inequality is satisfied by
a hypergraph representation that results in a highly modular structure. The
network can be effectively organized so that there are dense connections inside
the group and sparse connections outside by optimizing this inequality. To apply
this, edges should be created with nearly cliques.

The efficient development of modular structures for hypergraphs is the subject
of discussion in this section. This section highlights the significance of this
modular building structure.

Theorem 4.1. If the hyperedges of the hypergraph St⊙Kf satisfy the inequality
for all f and t, then the hypergraph can have a highly modular structure.

Proof. Theorem (3.7) mentions three different kinds of hyperedges for St ⊙Kf

by classifying vertex sets that produce complete graphs as hyperedges. The first
set of vertices, ϵ1, induces an edge with vertex degrees t+1 and 2; the second set,
ϵ2, induces Kf+1 combined to the pendent vertex of St with vertex degrees 2 and
1 (for f vertices); the third set, ϵ3, induces Kf+1 combined to center vertex of St
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Figure 1. (a) Modular structure of S3 ⊙K3 hypergraph as
set of vertices induces complete graph as hyperedge; (b)

Highly modular structure of S3 ⊙K3 hypergraph.

with vertex degrees t+1 and 1 (for f vertices)(Fig. 1(a)).). However, the external
connections within this group outweigh the internal ones. Thus, in this instance,
the modular structure’s modularity will be reduced. The efficacy of hyperedge
selection can be verified by using the inequality (|l|2 + |l|)/2 ≥

∑
y∈l dh(y).

• For ϵ1, t+ 1 + 2 ≤ (22 + 2)/2 ⇒ t ≤ −3/2.
• For ϵ2, f + 2 ≤ ((f + 1)2 + (f + 1))/2 ⇒ 2 ≤ f(f + 1).
• For ϵ3, f + t+ 1 ≤ ((f + 1)2 + (f + 1))/2 ⇒ 2t ≤ f(f + 1)

Given that t ≥ 1, there is a contradiction in the case of ϵ1. To put it another
way, because it is a grouping with less modularity, the inequality is not satisfied.
Furthermore, under t and f constraints, some hyperedges, in this case, satisfy the
inequality. We now need to regroup them to enhance the modular framework.

(1) One ϵ1 type edge combined with one ϵ2 type edge, then f + 1+ t+ 1 ≤
((f + 2)2 + (f + 2))/2 ⇒ 2t ≤ (f + 1)(f + 2)

(2) One ϵ1 type edge combined with ϵ3 type edge, then f + 1 + t + 1 ≤
((f + 2)2 + (f + 2))/2 ⇒ 2t ≤ (f + 1)(f + 2)

(3) Two ϵ1 type edge combined with ϵ3 type edge, then f + t − 1 + 2 <
((f + 3)2 + (f + 3))/2 ⇒ 2t ≤ f2 + 5f + 10

(4) All ϵ1 type edge combined with ϵ3 type edge, then f + 1 + 2t ≤ ((f +
1 + t)2 + (f + 1 + t))/2 ⇒ t ≤ f2 + t2 + f(2t+ 1)

Thus, (4) is the best regrouping since it has two types of hyperedges (all
edges of type ϵ1 with ϵ3 and ϵ2) and very few outside connections relative to
inner connections. Stated otherwise, regrouping (4) satisfies all f and t and
produces the lowest value for dh(y) when compared to alternative regroupings.
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Figure 2. Modular structure of K4 ⊙K3 hypergraph.

Modular structures with high modularity hence satisfy the inequality (|l|2 +
|l|)/2 ≥

∑
y∈l dh(y) for all f and t. □

Theorem 4.2. When r > 2, hyperedges can result in complete graphs generated
by modular structures of Kr ⊙Ks with vertex sets.

Proof. Theorem 3.9 presents two varieties of hyperedges. A collection of vertices
in the first type, ϵ1, induces Kr with vertex degree 2 for all vertices, while a set
of vertices in the second type, ϵ2, induces Ks+1 with vertex degrees 2 and 1
(for s vertices) (Fig. 2). It is now possible to evaluate how effective hyperedge
selection is.

(1) For ϵ1, 2r ≤ (r2 + r)/2 ⇒ 0 ≤ r(r − 3) ⇒ r > 2
(2) For ϵ2, 2 + s ≤ ((1 + s)2 + (1 + s))/2 ⇒ 2 ≤ s(1 + s) ⇒ s > 0

i.e., If r > 2, then both possibilities satisfy the inequality. □

5. Conclusion

In this study, new topological indices for hypergraphs were established and
described, along with their significance for the outputs of graph operations.
Additionally, modular structure construction was covered.

The hyperedge degree, dh(l), is a newly defined and described parameter
that evaluates a hyperedge’s connectedness to other hyperedges. Due to the
vertices in a specific function l, the values of dh(l) show how correlated these
hyperedges are, and dh(y) shows how many vertex y contained hyperedges in
Z. By utilizing these hypergraph implementations in social networks such as
Facebook, it becomes feasible to identify users who have greater influence over
others. dh(y) value will be high for the users who are members of various groups.
Membership in different groups is directly proportional to dh(y) value.

To circulate some important information (emergency issues) through Face-
book or some other social media, this parameter can play a major role. In this
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situation, we can share this message in some groups having more dh(l). So with
less time, without much effort, it will circulate and give much results. This work
introduced one inequality that can be used to get a highly modular structure.
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