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ON DEFICIENCY POLYNOMIAL OF GRAPHS†

B. AKHIL∗, ROY JOHN, V.N. MANJU

Abstract. The concept of graph polynomials, which is used to express

various parameters of graphs, is one of the most trending areas of graph

theory. In this article, we try to introduce a new graph polynomial may be
called as deficiency polynomial. We determine the deficiency polynomial of

certain standard classes of graphs and some other graphs obtained by graph
theoretical operations. Further we introduce the concept of co-deficient

graphs and trivial deficiency graphs and try to determine the graphs which

are trivial deficient. The roots and stability of this polynomial is also dealt
in detail.
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1. Introduction

Graph polynomials have been created for characterising graphs and assessing
structural properties of systems using combinatorial graph parameters. Polyno-
mials can be used to treat and solve a variety of problems in discrete mathematics
in particular, graph theory in a very effective way. Graph polynomials, in gen-
eral, encode the given graph’s graph theoretical information in various ways. If
a given graph polynomial encodes graph theoretic parameters, it might be of
interest. The Wiener polynomial, whose coefficients are dependent on graph
distances, is one example. Today, in the field of graph theory, there are plenty of
graph polynomials namely vertex polynomial, edge polynomial, neighbourhood
polynomial, chromatic polynomial, Hosoyo polynomial, Tutte polynomial, and
so on [5].
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All graphs under our consideration are simple, connected and undirected.
Let G = (V (G), E(G)) be a graph with order n = |V (G)| and size m = |E(G)|.
The degree of a vertex vi in G is the number of edges incident on vi and is
denoted by d(vi), degG(v) or simply di. The distance between two vertices u
and v in G is the length of the shortest path joining them denoted by d(u, v) in
G. The eccentricity of vi denoted by e(vi) or simply ei is defined as e(vi) =
max{d(u, vi) : u is a vertex of G}. The nth power of a graph G denoted as
Gn has the same vertex set as that of G and two vertices u and v are adjacent
in Gn, whenever d(u, v) ≤ n in G. The join of two graphs G1 and G2 denoted
by G1 ∨ G2 is a graph with vertex set V = V1 ∪ V2 and edge set E = E1 ∪ E2

together with all edges joining the vertices of V1 to every vertex of V2. We follow
[1] for more terminologies and notations not mentioned here.

2. The Deficiency Polynomial of a Graph

In a graph, if every two distinct pair of vertices are joined by an edge, the
graph is said to be complete [1]. Generally, a complete graph with n vertices
is denoted by Kn. For Kn, degree of each vertex is n − 1. Consider a graph G
of order n, which is not complete. The vertex degree polynomial of G, VG(x)
can be easily determined and the vertex degree polynomial of complete graph
of the same order is nxn−1. After adding a finite number of edges into G, the
given graph G can be converted into Kn. Here we are defining a new polynomial
called deficiency polynomial of G, which expresses the number of edges needed
to be added into G so that G eventually becomes Kn. The number of edges to
be added into G can be termed as the deficiency. Also we can see that under
the operation ⊕̂ defined in this section, we get DG(x) ⊕̂ VG(x) = nxn−1.

Definition 2.1. Let G = (V,E) be a graph. Let vi, i = 1, 2, . . . , n be the ver-
tices of G with corresponding vertex degrees di, i = 1, 2, . . . , n. The deficiency
polynomial of the graph G, denoted by DG(x) is defined as

DG(x) =

n∑
i=1

xϵi ,

where ϵi = n− 1− di, i = 1, 2, . . . , n.

Remark 2.1. The following are some immediate observations from the defini-
tion.

(1) The degree of deficiency polynomial of a graph is atmost n− 2.
(2) The constant term in DG(x) represents the number of vertices in G with

degree n− 1.
(3) For a graph G with order n and size m, the general form of the deficiency

polynomial of DG(x) is given by, DG(x) = a0 + a1x + a2x
2 + . . . +
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an−2x
n−2, where ai ∈ N, 1 ≤ ai ≤ n and

n−2∑
i=0

ai = n. Then

1

2

n−2∑
i=0

i ai =

(
n

2

)
−m. (1)

The right hand side of equation (1) gives the number of edges should be
added to G so that G becomes a complete graph Kn.

Next, we try to introduce an operation on these polynomials.
Let G be a graph with order n. Consider the general form of vertex degree

polynomial VG(x) and deficiency polynomial DG(x) of G

VG(x) = a0x
n−1 + a1x

n−2 + a2x
n−3 + . . .+ an−2x (2)

DG(x) = a0 + a1x+ a2x
2 + . . .+ an−2x

n−2, (3)

where ai ∈ N, 1 ≤ ai ≤ n and
n−2∑
i=0

ai = n.

Consider the operation ⊕̂ : DG(x)× VG(x) −→ VKn
(x) on these polynomials;

DG(x) ⊕̂ VG(x) =

n−2∑
i=0

aix
n−1−di ⊕̂

n−2∑
i=0

aix
di

=

n−2∑
i=0

aix
n−1−di × xdi

=

n−2∑
i=0

aix
n−1 = nxn−1,

which is nothing but the vertex degree polynomial of the complete graph Kn.
Clearly the operation is well-defined.

3. DG(x) of Some Standard Graphs

Proposition 3.1. The following result holds for the corresponding class of
graphs.

(1) DPn
(x) = 2xn−2 + (n− 2)xn−3, n ≥ 2

(2) DCn
(x) = nxn−3, n ≥ 3

(3) DKn
(x) = n, n ≥ 1

(4) DKm,n(x) = mxm−1 + nxn−1

(5) DBm,n(x) = xn + xm + (m+ n)xm+n

(6) DTn(x) = (n+ 1)x2n−4 + (n− 2)x2n−6, n ≥ 2
(7) DWn

(x) = nxn−3 + 1, n ≥ 3.
(8) DLm,n

(x) = xm+n−2 + xn−1 + (m− 1)xn + (n− 1)xm+n−3.

Proof. (1) Let v1, vn be the pendant vertices and v2, v3, . . . , vn−1 be the internal
vertices of Pn. Then ϵi = n− 2 for i = 1, n and ϵi = n− 3, 2 ≤ i ≤ n− 1. This
gives the result.
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(2) For each vertex vi in Cn, di = 2, 1 ≤ i ≤ n. This implies that ϵi = n− 3,
1 ≤ i ≤ n.
(3) Degree of each vertex in Kn is n− 1. Hence, ϵi = 0, 1 ≤ i ≤ n.
(4) Let V1 = {v1, v2, . . . , vm} and V2 = {u1, u2, . . . , un} be the two partite sets.
Then deg(vi) = n, 1 ≤ i ≤ m and deg(uj) = m, 1 ≤ j ≤ n. Then,

DKm,n
(x) =

m∑
i=1

xm+n−1−n +

n∑
j=1

xm+n−1−m

= mxm−1 + nxn−1.

(5) Let Bm,n denotes the double star with m + n + 2 vertices. Let v and u
be the internal vertices and vi, 1 ≤ i ≤ m be the pendant vertices adjacent to
the vertex v and uj , 1 ≤ j ≤ n be that of u. Then deg(v) = m + 1, deg(u) =
n+ 1, deg(vi) = deg(uj) = 1, 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

DBm,n
(x) = xm+n+1−(m+1) + xm+n+1−(n+1) + (m+ n)xm+n

= xn + xm + (m+ n)xm+n.

(6) A triangular snake Tn is obtained from the path Pn by replacing each edge
of the path by a triangle C3. Tn has 2n − 1 vertices. Let vi be the vertices
with degree 4 and uj be the vertices with degree 2, where 1 ≤ i ≤ n − 2 and
1 ≤ j ≤ n+1. This gives that, ϵi = 2n−6 and ϵj = 2n−4. These facts together
with the definition of deficiency polynomial gives the result.
(7) Let v be the vertex of Wn with degree n − 1 and vi, 1 ≤ i ≤ n − 1 be the
vertices with degree 3. Then ϵi = n− 4 for the vertices vi, 1 ≤ i ≤ n− 1 and 0
for the vertex v.
(8) The lollipop graph Lm,n is the graph obtained by joining a complete graph
Km to a path Pn with a bridge. Let Lm,n denotes the lollipop graph. Let
u1, u2, . . . , un be the vertices of Pn where u1 and un are pendant vertices and
v1, v2, . . . , vm be the vertices of Km. A bridge is joined between v1 and u1. Then
deg(v1) = m, deg(vi) = m−1, 2 ≤ i ≤ m, deg(ui) = 2, 1 ≤ i ≤ n−1, deg(un) = 1.
Then,

DLm,n
(x) = xm+n−2 + xn−1 + (m− 1)xn + (n− 1)xm+n−3.

This completes the proof. □

The following are some immediate consequences of the above proposition

Corollary 3.2. For n ≥ 3,

x DPn−1
(x) = DPn

(x)− xn−3.

Proof. We know that DPn(x) = 2xn−2 + (n− 2)xn−3.
Consider,

DPn−1
(x) = 2xn−1−2 + (n− 3)xn−1−3

= 2xn−3 + (n− 3)xn−4
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x DPn−1
(x) = 2xn−3x+ (n− 3)xn−4x

= 2xn−2 + (n− 3)xn−3

= 2xn−2 + (n− 2)xn−3 − (n− 2)xn−3 + (n− 3)xn−3

= DPn(x) + ((n− 3)− (n− 2))xn−3

x DPn−1
(x) = DPn

(x)− xn−3.

This completes the proof. □

Corollary 3.3. For n ≥ 3,

DCn−1(x) =
n− 1

nx
DCn(x).

Proof. We know that DCn
(x) = nxn−3.

Consider,

DCn−1(x) = (n− 1)xn−4

= nxn−4 − xn−4

= DCn
(x)x−1 − 1

n
DCn

(x)x−1

= DCn
(x)

(
1

x
− 1

nx

)
=

n− 1

nx
DCn

(x).

This completes the proof. □

In the following result, deficiency polynomial of Km,n is written in terms of
deficiency polynomials of two cycles.

Corollary 3.4. For m,n ≥ 3,

DKm,n(x) =
x2

mn
(nDCm(x) +mDCn(x)) .

Proof. We know that DKm,n(x) = mxm−1 + nxn−1.
Consider,

DKm,n(x) = mxm−1 + nxn−1

=
x2

m
DCm

(x) +
x2

n
DCn

(x)

= x2

(
DCm

(x)

m
+

DCn
(x)

n

)
=

x2

mn
(n DCm(x) +m DCn(x)) .

This completes the proof. □

Proposition 3.5. For an r-regular graph G on n vertices DG(x) = nxn−r−1.
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Proof. For each vertex vi, di = r, 1 ≤ i ≤ n. This implies that ϵi = n− 1− r,
1 ≤ i ≤ n. This completes the proof. □

4. Deficiency Polynomial of Graphs obtained from Some Graph
Operations

In this section we compute deficiency polynomial of certain graphs which are
obtained by performing some graph theoretic operations such as join, corona
product, cartesian product. Further we construct some graphs say shadow
graphs and splitting graphs and get their deficiency polynomial.

Theorem 4.1. Let G and H be two graphs, G ∨H be their join. Then

DG∨H(x) = DG(x) +DH(x).

Proof. Let G and H be two graphs with number of vertices m,n respectively,
m,n ≥ 2. Let v1, v2, . . . , vm and u1, u2, . . . , un be the vertices of G and H
with degG(vi) = di and degH(uj) = d∗j , i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The

deficiency polynomial of G and H is given respectively by DG(x) =
m∑
i=1

xm−1−di ,

DH(x) =
n∑

j=1

xn−1−d∗
j .

Consider, the join G ∨ H of the graphs G and H. G ∨ H has the same
vertex set vi, uj , i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Here degG∨H(vi) = di + n and
degG∨H(uj) = d∗j +m, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
Consider,

DG∨H(x) =

m∑
i=1

xm+n−1−(di+n) +

n∑
j=1

xm+n−1−(d∗
j+m)

=

m∑
i=1

xm−1−di +

n∑
j=1

xn−1−d∗
j

= DG(x) +DH(x).

This completes the proof. □

Theorem 4.2. Let G and H be two graphs, the corona product of G and H be
denoted as G⊙H. Then

DG⊙H(x) = xn(m−1)DG(x) +mx(n+1)(m−1)DH(x).

Proof. Let vi, i = 1, 2, . . . ,m and uj , j = 1, 2, . . . , n be the vertices of G and
H respectively. Let degG(vi) = di, i = 1, 2, . . . ,m and degH(uj) = d∗j , j =
1, 2, . . . , n. Consider the corona product G ⊙H of G and H. Then G ⊙H has
m(n+1) vertices. The vertices of G⊙H is relabeled as follows: the vertices of H
which are adjacent to vi in G⊙H is labeled as uij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.
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Then degG⊙H(vi) = di + n and degG⊙H(uij) = d∗j + 1.
Consider,

DG⊙H(x) =

m∑
i=1

xm(n+1)−1−(di+n) +

n∑
j=1

xm(n+1)−1−(d∗
j+1)

= xn(m−1)DG(x) +mx(n+1)(m−1)DH(x).

Hence the theorem. □

Theorem 4.3. For any two graphs G1 and G2 with order m,n ≥ 2, the defi-
ciency polynomial of the cartesian product of G1 and G2 is given by

DG1×G2
(x) = x(m−1)(n−1)DG1

(x)DG2
(x).

Proof. Let ui ∈ V (G1), with deg(ui) = di, i = 1, 2, . . . ,m and vj ∈ V (G2), with
deg(vj) = d∗j , j = 1, 2, . . . , n. Consider the cartesian product G1 × G2. Let
(ui, vj) ∈ V (G1 ×G2). Then deg(ui, vj) = degG1(ui) + degG2(vj) = di + d∗j .
Consider,

DG1×G2
(x) =

m∑
i=1

n∑
j=1

xmn−1−(di+d∗
j )

=

m∑
i=1

n∑
j=1

xmn−1−(m−1−di)+m−1−(n−1−d∗
j )+n−1

= x(m−1)(n−1)DG1
(x)DG2

(x).

This completes the proof. □

Corollary 4.4. For the planar grids m,n ≥ 2,

DPm×Pn(x) = 4xmn−3 + [2(m+ n)− 8]xmn−4 + [mn− 2(m+ n) + 4]xmn−5.

Corollary 4.5. For the ladder graph Ln, n ≥ 2

DLn(x) = 4x2n−3 + 2(n− 2)x2n−4.

Corollary 4.6. For the torus grids m,n ≥ 3,

DCm×Cn(x) = mnxmn−5.

Corollary 4.7. For m,n ≥ 1,

DKm×Kn(x) = mnx(m−1)(n−1).

Corollary 4.8. For the prisms m ≥ 3, n ≥ 2,

DCm×Pn(x) = 2mxmn−4 +m(n− 2)xmn−5.

The splitting graph S′(G) of a graph G is obtained by adding to each vertex
v a new vertex v′, such that v′ is adjacent to every vertex that is adjacent to v
in G [4].
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Theorem 4.9. For the splitting graph of G,

DS′(G)(x) = x

n∑
i=1

x2ϵi + xnDG(x)

where ϵi = n− 1− di, i = 1, 2, . . . , n.

Proof. Let vi be the vertices of G with degG(vi) = di, i = 1, 2, . . . , n. Let v′i be
the corresponding vertex of vi in S′(G). Clearly S′(G) has 2n vertices. Then
degS′(G)(vi) = 2di and degS′(G)(v

′
i) = di ∀ i = 1, 2, . . . n.

Consider,

DS′(G)(x) =

n∑
i=1

x2n−1−2di +

n∑
i=1

x2n−1−di

= x

n∑
i=1

(
xn−1−di

)2
+ xn

n∑
i=1

xn−1−di

= x

n∑
i=1

x2ϵi + xnDG(x).

This completes the proof. □

The shadow graph S2(G) of a connected graph G is constructed by taking
two copies of G, say G′ and G′′. Join each vertex u′ in G′ to the neighbors of
the corresponding vertex u′′ in G′′ [4].

Theorem 4.10. For the shadow graph of G,

DS2(G)(x) = x

n∑
i=1

x2ϵi ,

where ϵi = n− 1− di, i = 1, 2, . . . , n.

5. Co-Deficient Graphs and Deficiency Equivalent Class of DG(x)

In this section, deficiency polynomial of graphs which are isomorphic and not
isomorphic to each other are discussed.

Theorem 5.1. If G and H are two isomorphic graphs, then DG(x) = DH(x).

Proof. Trivially holds. □

The converse of the above theorem need not be true. That is, even if G and
H have the same deficiency polynomial, they need not be isomorphic to each
other.

For example, consider figure 1.
Here both the graphs have the same deficiency polynomial, but they are not

isomorphic. In this case, we can define the following.
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Figure 1. Non-isomorphic graphs with same deficiency
polynomials

Definition 5.2. Two non-isomorphic graphs G and H are said to be co-

deficient graphs (written G
D∼ H) if DG(x) = DH(x).

Definition 5.3. Let G1, G2, . . . , Gn be the graphs having the same deficiency
polynomial and Gi ≇ Gj ∀ i ̸= j, i, j ∈ {1, 2, . . . , n}.
Then C = {Gi,∀ i = 1, 2, . . . , n} is called a deficiency equivalent class. A graph G
is said to be trivial deficiency, if there exists no H (H ≇ G) with the deficiency
polynomial as G.

For example Kn, n ≥ 2 and Cn, n ≥ 3 are trivial deficiency graphs.
Although each graph has a unique degree sequence, two non-isomorphic graphs

may have identical degree sequence[1].

Theorem 5.4. Two non-isomorphic graphs with identical degree sequence must
be co-deficient.

Theorem 5.5. Let G be a trivial deficiency graph. Then G∨Kn is also a trivial
deficiency graph.

Proof. Let DG(x) be the deficiency polynomial of G. Since G is a trivial defi-
ciency graph, no other graph has the deficiency polynomial as that of G. Also
we have,

DG∨Kn(x) = DG(x) +DKn(x)

= DG(x) + n.

Hence G ∨Kn is also a trivial deficiency graph. □

Let G and H be co-deficient graphs. That is G ≇ H with DG(x) = DH(x).
Naturally a question arises: “How can one generate infinitely many co-deficient
graphs from the given pair of co-deficient graphs G and H?” The following result
gives an affirmative answer to this question.

Theorem 5.6. Let G and H be two graphs such that G
D∼ H, then S(G)

D∼ S(H).

Proof. Let the vertex set of G and H be vi and uj , with degG(vi) = di and

degH(uj) = d∗j where i, j = 1, 2, . . . , n with size m. Since G
D∼ H, we have
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DG(x) = DH(x). Let S(G) and S(H) be the subdivision graph of G and
H respectively. Let wi and w∗

i be the newly introduced vertices of G and
H respectively after the process subdivision, where i = 1, 2, . . . ,m. Then,
degS(G)(vi) = di, degS(H)(vi) = d∗i and degS(G)(wi) = degS(H)(w

∗
i ) = 2.

Consider,

DS(G)(x) =

n∑
i=1

xm+n−1−di +m× xm+n−1−2

= xmDG(x) +mxm+n−3.

Similarly, DS(H)(x) = xmDH(x) +mxm+n−3.
This completes the proof. □

An illustration of the theorem is given below.

Figure 2. Co-deficient graphs with deficiency polynomial
x2 + 2x3 + 3x4

Figure 3. Co-deficient graphs obtained from the graphs in
figure 2 after subdivision
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6. Roots and Stability Analysis of Deficiency Polynomial

The solutions of the equation DG(x) = 0 is called the roots of deficiency
polynomial of the given graph. Since all the coefficients of DG(x) is positive, it
can’t have a positive root. So we can say that (0,∞) is a zero-free interval of
the deficiency polynomial DG(x) of any graph G.

Next we give a characterization for the deficiency polynomial of a graph G to
have 0 as a root.

Theorem 6.1. Let G be a graph of order n, then 0 is a root of DG(x) if and only
if G has no vertex of degree n− 1. Moreover the multiplicity of 0 is n− 1−∆,
where ∆ is the maximum degree of the graph.

Proof. Assume that 0 is a root of DG(x). So, x is a factor of DG(x). Hence by
division algorithm, we can find a polynomial P (x) such that DG(x) = x P (x),
where deg(P (x)) < deg(DG(x)). That is x P (x) is a polynomial having no
constant terms. This implies that DG(x) has no constant term. From remark
2.1, we know that the constant term in DG(x) represents the number of vertices
in G with degree n− 1. In this case we have shown that, DG(x) has no constant
terms, which shows that G has no vertex of degree n− 1.

Conversely assume that DG(x) has no vertex of degree n− 1. Consider

DG(x) = a1x+ a2x
2 + . . .+ an−2x

n−2

= x(a1 + a2x+ . . .+ an−2x
n−3)

where
n−2∑
i=1

ai = n. DG(x) = 0 implies x = 0 is a root. This completes the

proof. □

Proposition 6.2. For an r-regular graph on n vertices other than Kn, 0 is the
only root with multiplicity n− r − 1.

In the next section we discuss about the stability of deficiency polynomial of
certain graphs.

Definition 6.3. [2] A polynomial f(z1, . . . , zn) is said to be stable with respect
to a region Ω ⊆ Cn if no root of f lies in Ω.

Specifically, Hurwitz polynomials and Schur polynomials are polynomials that
exhibit stability with regard to the open left half plane and the open unit disc,
respectively.

Next we try to determine the stability of deficiency polynomial of certain
classes of graphs with respect to the open right half plane.

Theorem 6.4. Let Pn be the path with n ≥ 2 vertices, then DPn
(x) is stable.

Proof. We know that for each n ≥ 2, DPn(x) = 2xn−2 + (n − 2)xn−3. To find
the roots of DPn

(x) consider the following.

DPn
(x) = 2xn−2 + (n− 2)xn−3 = 0
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xn−3 [2x+ n− 2] = 0.

This gives the roots of DPn
(x) as x = 0 ( Since 0 repeats n− 3 times as a root

of DPn
(x), 0 has multiplicity n−3),

−(n− 2)

2
. Clearly x =

−(n− 2)

2
lies in the

left half plane. Therefore DPn
(x) is stable. This completes the proof. □

Theorem 6.5. Deficiency polynomial of every r-regular graph is stable, if there
exists roots.

Remark 6.1. For the complete graph Kn no roots exists.

Proof. Since 0 is the only root of an r-regular graph and it does not belongs to
the open right half plane, the result holds. □

Theorem 6.6. The deficiency polynomial of cartesian product of G1 and G2 is
stable if both the deficiency polynomial of G1 and G2 are stable.

Proof. Let G1 and G2 be two graphs with order m and n,m,n ≥ 2 respectively.
Then we have to show that DG1×G2(x) is stable if DG1(x) and DG2(x) are
stable. From theorem 4.3, the deficiency polynomial of cartesian product of G1

and G2 is given by DG1×G2
(x) = x(m−1)(n−1)DG1

(x)DG2
(x). To find the roots

of DG1×G2
(x), consider

x(m−1)(n−1)DG1(x)DG2(x) = 0.

This gives the roots as x = 0 ( Since 0 repeats mn−m− n+ 1 times as a root
of DG1×G2

(x), 0 has multiplicity mn − m − n + 1) together with the roots of
DG1

(x) and DG2
(x). Since x = 0 does not belong to the open right half plane,

the stability of DG1×G2
(x) is completely determined by the roots of DG1

(x) and
DG2(x). Hence the theorem. □

From theorem 6.6, it is clear that the deficiency roots of G1 × G2 is exactly
that of G1 and G2 together with multiplicity.
Following are some corollaries of theorem 6.6.

Corollary 6.7. For m,n ≥ 2, DPm×Pn(x) is stable.

Proof. From corollary 4.4, the deficiency polynomial of Pm × Pn is given by
DPm×Pn

(x) = 4xmn−3+[2(m+ n)− 8]xmn−4+[mn− 2(m+ n) + 4]xmn−5. On

solving DPm×Pn(x) = 0 yields, x = 0 (with multiplicity mn− 5), x = 1− n

2
and

x = 1− m
2 . Clearly for m,n ≥ 2, x = 1− n

2
and x = 1− m

2
are negative. This

shows that no roots of Pm×Pn lies in the open right half plane. This completes
the proof. □

In a similar manner the following can also be proved.

Corollary 6.8. For n ≥ 2, the deficiency polynomial of Ladder graph Ln is
stable.
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Corollary 6.9. For m,n ≥ 1, DKm×Kn
(x) is stable.

Proof. Since Km ×Kn is a regular graph with degree m+ n− 2, using theorem
6.5 the proof holds. □

Corollary 6.10. For m,n ≥ 3, DCm×Cn
(x) is stable.

Corollary 6.11. For m ≥ 3, n ≥ 2, DCm×Pn
(x) is stable.

Theorem 6.12. For the wheel graph, DWn
(x) is stable for n = 4, 5.

Proof. From theorem 3.1 (7), the deficiency polynomial of Wn is given
by DWn(x) = nxn−3 + 1, n ≥ 3.
Case 1: n = 4

In this case DW4
(x) = 4x + 1. On solving DW4

(x) = 0 yields x =
−1

4
, which

belong to the left half plane. This shows that DW4
(x) is stable.

Case 2: n = 5
In this case DW5(x) = 5x2 + 1. To determine the roots of DW5(x), consider

DW5
(x) = 0. This gives x = ± i√

5
, which lies in the imaginary axis. This shows

that DW5
(x) is stable.

From the above two cases the result holds. □

Remark 6.2. For n ≥ 6, DWn(x) need not be stable. For n = 6, 7, 8 and 9, the
GeoGebra plots of DWn(x) are given below:

Figure 4. n = 6

Theorem 6.13. [3] Let f(z) = zn + a1z
n−1 + . . . + an, where ai ∈ C. Then,

inside the circle |z| = 1+maxi |ai|, there are exactly n roots of f ( multiplicities
counted).
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Figure 5. n = 7

Figure 6. n = 8

Theorem 6.14. For the lollipop graph Lm,n, m ≥ 3, n ≥ 1, all the roots of
DLm,n

(x) lies inside the circle |z| = max {m,n}.

Proof. From proposition 3.1(8) we have,

DLm,n
(x) = xm+n−2 + xn−1 + (m− 1)xn + (n− 1)xm+n−3.

Case 1: if m is maximum
In this case using theorem 6.13, |ai| = max {m− 1, 1, n− 1} = m − 1. This
shows that the radius of the circle is 1 +m− 1 = m. This proves the case.
Case 2: if n is maximum
As in case 1, |ai| = max {m− 1, 1, n− 1} = n − 1. This shows that the radius
of the circle is 1 + n− 1 = n. This proves the case.
Hence the result. □
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Figure 7. n = 9
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